III B.Tech - I Semester - Regular Examinations - NOVEMBER 2023

ENVIRONMENTAL GEOTECHNIQUES (HONORS in CIVIL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Discuss in detail the following types of	L1	CO1	7 M		
		bonding agents found with clay minerals					
		and mention the name of the minerals					
		containing each of the following bonds.					
		i) Hydrogen bond ii) Covalent bond					
		iii) Van der Waals' forces					
	b)	Discuss in detail about soil-water-	L2	CO1	7 M		
		contaminant interaction.					
	OR						
2	a)	Explain about the scope of	L1	CO1	7 M		
		Geoenvironmental Engineering with					
		reference to soil physics, soil chemistry,					
		hydrogeology, and biological processes.					
	b)	Explain about the structure and composition	L2	CO1	7 M		
		of the following clay minerals. Mention the					
		differences between them. Show the					
L	1	1	<u> </u>	l	I]		

Max. Marks: 70

		structure in symbolic form				
		(i) Montmorillonite (ii) Illite (iii) Kaolinite (iv) Chlorite				
		UNIT-II				
3	a)	Compute the diffusive mass flux of Chloride L1	CO2	7 M		
		through the vertical clay wall AB shown in				
		Figure. Assume one-dimensional flow only.				
		Permeability of clay is 10 ⁻⁹ m/sec and the				
		Effective Diffusion Coefficient is 0.9 X 10 ⁻⁹				
		m^2 /sec. Porosity of clay is 0.35.				
		1.0 m Waste $1.0 m$				
		Fresh ground water $c = 2 \times 10^5 \text{ mg/m}^3$ Contaminated ground water $c = 8 \times 10^5 \text{ mg/m}^3$ Fresh ground waterBBedrockD				
	b)	What factors can affect degree of L2	CO2	7 M		
		consolidation? How do you find the degree				
		of consolidation?				
OR						
4	a)	Differentiate between UU, CU, and CD L2	CO2	7 M		
		tests.				
	b)	Explain in detail about: (i) Swelling L1	CO2	7 M		
		potential and (ii) Compressibility				
UNIT-III						
5	a)	Discuss the need for contaminated site L2	CO3	7 M		
		characterization.				

	b)	Mention the site characterization techniques	L1	CO3	7 M
		of a contaminated site and explain any two			, 1,1
		in detail.			
		OR			
6	a)	With a neat sketch, explain the components	L1	CO3	7 M
		of landfill and their functions.			
	b)	What are the requirements of clay barrier	L2	CO3	7 M
		system?			
		UNIT-IV			
7	a)	Explain in detail about slope stability	L1	CO4	4 M
,	<i>u)</i>	analysis of infinite slopes.			
	b)	Explain in detail about single and double	L2	CO4	10 M
		liners systems for landfills.			
		OR			
8	a)	Determine the Taylor stability factor for the	L3	CO4	6 M
		c-phi soils.			
	b)	Explain in detail about determination of	L3	CO4	8 M
		factor of safety for the landfill slopes.			
9	3)	UNIT-V What are the mechanisms and steps to be	13	CO5	7 M
7	a)	considered in design of a landfill liners?	LJ	COJ	/ 111
	b)	How the free vibration of a single degree of	ΤΛ	CO5	7 M
	0)	freedom system is designed? What are the	L4	COJ	/ 101
		reasons for studying the vibration of SDOD			
		system in landfill?			
	1		1		

1() a)	In detail explain about critical damping,	L4	CO5	6 M
		overdamped and under damped that occurs			
		in landfills.			
	b)	Differentiate between Thermal, Phyto and	L3	CO5	8 M
		Electro-kinetic remediation techniques.			